Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Hua Zhang, Xiao-Hui Wang, Shan Liu and Cheng Yao*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China

Correspondence e-mail: yaocheng@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Some non-H atoms missing
R factor $=0.069$
$w R$ factor $=0.191$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

C 2006 International Union of Crystallography All rights reserved

3,9-Bis(2-hydroxy-2-propyl)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane 3,9-dioxide hemihydrate

In the crystal structu of the title compound, $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2}$-$0.5 \mathrm{H}_{2} \mathrm{O}$, the asymmetric unit contains two spiro[5.5]undecane molecules and one water molecule. The structure is stabilized by intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

A pentaerythritol diphosphonate compound is capable of being used as a fire retardant agent and as a plasticizer (Tanabe et al., 2005). The title compound, (I), has particular utility for flame retardant materials, which provide phosphorus as a component to reduce flammability (Levchik \& Weil, 2005). We report here the crystal structure of (I).

(I)

The asymmetric unit of (I) contains two spiro[5.5]undecane molecules and one water molecule (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al., 1987).

The rings A ($\mathrm{P} 1 / \mathrm{O} 3 / \mathrm{O} 4 / \mathrm{C} 4-\mathrm{C} 6), B(\mathrm{P} 2 / \mathrm{O} 5 / \mathrm{O} 6 / \mathrm{C} 6-\mathrm{C} 8), C$ (P3/O11/O12/C15-C17) and D ($\mathrm{P} 4 / \mathrm{O} 13 / \mathrm{O} 14 / \mathrm{C} 17-\mathrm{C} 19$) have chair conformations with puckering parameters of $Q_{\mathrm{T}}=$ 0.6168 (6) $\AA, \theta=61.76(5)^{\circ}, \varphi=-64.80(8)^{\circ}$ for ring $A, Q_{\mathrm{T}}=$ 1.2407 (25) $\AA, \theta=175.58(5)^{\circ}, \varphi=17.55(55)^{\circ}$ for ring $B, Q_{\mathrm{T}}=$ 0.6142 (9) $\AA, \theta=112.61(8)^{\circ}, \varphi=115.65(13)^{\circ}$ for ring C, and $Q_{\mathrm{T}}=2.4984(9) \AA, \theta=89.89(2)^{\circ}, \varphi=-90.35(2)^{\circ}$ for ring D (Cremer \& Pople, 1975).

The crystal structure is stabilized by intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1).

Experimental

The title compound was prepared in a one-step reaction of pentaerythritol dichlorophosphite ($50.0 \mathrm{~g}, 189 \mathrm{mmol}$) (Hechenbleikner \& Enlow, 1983) with formic acid ($22.0 \mathrm{~g}, 478 \mathrm{mmol}$) and acetone $(80 \mathrm{ml})$, heated with stirring at $300-323 \mathrm{~K}$ for 2 h (Brium, 1978). The reaction mixture was filtered and the resulting solid was washed with acetonitrile and acetone. Recrystallization from a mixture of glacial acetic acid/acetone (1:5) afforded a white powder. Crystals were obtained by dissolving the diphosphonate (0.4 g) in ethyl acetate $(10 \mathrm{ml})$ and evaporating it slowly at room temperature for about 7 d .

Crystal data

```
\(\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{8} \mathrm{P}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\)
\(M_{r}=353.24\)
Triclinic, \(P \overline{1}\)
\(a=7.5500\) (15) \(\AA\)
\(b=10.539\) (2) \(\AA\)
\(c=21.068\) (4) \(\AA\)
\(\alpha=86.28(3)^{\circ}\)
\(\beta=82.40(3)^{\circ}\)
\(\gamma=77.11\) (3) \({ }^{\circ}\)
```

Received 26 May 2006
Accepted 31 May 2006

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$\quad T_{\min }=0.929, T_{\max }=0.941$
6846 measured reflections

6337 independent reflections
3535 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.07 P)^{2} \\
&+2 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.191$
$S=1.01$
6337 reflections
388 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W-\mathrm{HWA} \cdots \mathrm{O} 5^{\text {i }}$	0.79 (6)	2.06 (7)	2.823 (7)	163 (6)
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 15$	0.82	2.00	2.818 (5)	175
$\mathrm{O} W-\mathrm{H} W B \cdots \mathrm{O} 7^{\mathrm{ii}}$	0.82 (6)	2.34 (6)	2.706 (8)	108 (5)
$\mathrm{O} 8-\mathrm{H} 84 \cdots \mathrm{O} 2^{\text {iii }}$	0.82	1.97	2.785 (5)	175
O9-H9A \cdots O ${ }^{\text {O }}$	0.82	2.27	2.599 (8)	105
$\mathrm{O} 16-\mathrm{H} 16 A \cdots \mathrm{O} 10^{\text {iv }}$	0.82	1.90	2.716 (5)	179
C5-H5A \cdots O8 ${ }^{\text {v }}$	0.97	2.44	3.405 (7)	173
C5-H5B..O1	0.97	2.51	3.106 (7)	120
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O} 2^{\text {vi }}$	0.97	2.47	3.332 (7)	148
C8-H8B . ${ }^{\text {O }}$	0.97	2.59	3.155 (7)	117
C16-H16B \cdots O9	0.97	2.50	3.056 (7)	117

Symmetry codes: (i) $-x+2,-y,-z$; (ii) $x, y, z-1$; (iii) $-x+1,-y+1,-z+1$; (iv)
$-x+1,-y+1,-z ;(\mathrm{v})-x+2,-y+1,-z+1$; (vi) $x+1, y, z$.

The H atoms of water molecules were located in difference syntheses and refined $\left[\mathrm{O}_{\text {water }}-\mathrm{H}=0.791\right.$ (19)-0.826 (19) $\AA ; U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$]. The remaining H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA$ for methyl and methylene H, respectively, and constrained to ride on their parent

Figure 1
The asymmetric unit of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
atoms with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{O})$, where $x=1.2$ for methylene H and $x=1.5$ for all other H .

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brium, G. H. (1978). US Patent 4070336.
Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hechenbleikner, I. \& Enlow, W. P. (1983). US Patent 4456567.
Levchik, S. V. \& Weil, E. D. (2005). J. Polym. Int. 54, 11-35.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tanabe, S., Yanagida, T., Imamura, K., Tando, K. \& Taketani, Y. (2005). EP Patent 1586576.

